
Software Environments For Cluster-based Display Systems

Yuqun Chen
�

Han Chen Douglas W. Clark Zhiyan Liu Grant Wallace Kai Li

Department of Computer Science, Princeton University, Princeton, NJ 08544

Abstract

An inexpensive way to construct a scalable display wall system is to
use a cluster of PCs with commodity graphics accelerators to drive
an array of projectors. A challenge is to bring off-the-shelf sequen-
tial applications to run on such a display wall efficiently without
using expensive, high-performance interconnects.

This paper studies two execution models for a scalable display
wall system: master-slave and synchronized execution models. We
have designed and implemented four software tools, two for each
execution model, including VDD (Virtual Display Driver), GLP
(GL-DLL Replacement), SSE (System-level Synchronized Execu-
tion), and ASE (Application-level Synchronized Execution). In or-
der to support the synchronized execution model, we have also de-
signed a broadcast, speculative file cache to provide scalable I/O
performance. The paper reports our experimental results with sev-
eral 3D applications on the display wall to understand the perfor-
mance implications and tradeoffs of these methods.

1 Introduction

A display is the most common device with which human beings
visualize information inside a computer or a network. The scale
and resolution of a display device define how much information a
user can view at a time. While the cost-performance ratio for many
key enabling technologies has been improving at or beyond the rate
predicted by Moore’s Law, display resolution – a key aspect of an
effective information system – is lagging far behind. Monitors are
still the dominant display technology through which people visual-
ize information. Their resolutions have been increasing at a mere
5% annual rate for the last two decades. This widening gap is a
major limitation on human-computer interaction.

One strategy for overcoming the resolution limitation is to tile
multiple projection devices over a single display surface. Video
products using this method are usually called video walls. A typi-
cal video wall uses a special piece of hardware, called a video pro-
cessor, to scale lower-resolution video content, such as in NTSC,
VGA, SVGA, and HDTV formats to fit a large display surface. It
does not provide digital applications with higher intrinsic display
resolution. To provide higher intrinsic resolution, some research
prototypes and commercial products use a high-end graphics ma-
chine with multiple tightly coupled graphics pipelines to render im-
ages and drive the tiled display devices [12]. Such a system is very
expensive, often costing millions of dollars.

The Scalable DisplayWall explores how to build and use a scal-
able display system for users to collaborate across space and time.

�
Microsoft Research, Microsft Corporation, Redmond, WA 98052,�

yuqunc � @microsoft.com

We are particularly interested in building a scalable display sys-
tem with low-cost, commodity components such as PCs, PC graph-
ics accelerators, off-the-shelf network, consumer video and sound
equipment, and portable presentation projectors. The advantages of
this approach are low cost and technology tracking, as high-volume
commodity components typically have better price/performance ra-
tios and improve at faster rates than special-purpose hardware. In
order to succeed, we must understand how to build a scalable dis-
play system that can render and drive hundreds of millions of pixels,
support existing and new applications at interactive speed.

This paper focuses on the issue of developing software tools
to bring off-the-shelf, sequential applications to a scalable display
wall built with commodity components and run them efficiently at
its intrinsic resolution. Many applications either play back multi-
media content, for example, MPEG movies, HDTV streams, im-
ages, and VRML models, or allow users to interactively navigate
content such as web pages and Macromedia Flash movies. The con-
tent usually conforms to publicly-documented standards. There-
fore, it is feasible, though sometimes tedious, to write special play-
back software to parse and play back these kinds of content for a
cluster environment.

Yet for many other applications, it becomes extremely difficult,
if not impossible, to apply the play-back approach. One reason
is that the interactive behaviors of these applications are often en-
coded in the software itself rather than in the raw data, as in a
Macromedia movie. An example is a typical 3D game for personal
computers. The scenes in the game are described using standard
file formats. Manipulation of the scenes and interpretation of user
inputs, on the other hand, is often a trade secret and hidden in mil-
lions of lines of machine instructions. Another obstacle is the sheer
amount of work required to write the playback software that mim-
ics the behavior of the original application. Consider Macromedia
Photoshop, a high-quality image editing tool. Many of its function-
alities and features are well known and described in textbooks and
technical papers. However, to produce a new software package that
has similar “look and feel” would require many months of work.

An important objective of the Scalable Display Wall Project is
to design a a runtime environment for running and developing ap-
plications that we daily use on regular desktop computers, but with
much higher intrinsic resolution. This paper focuses on the issue
of developing software tools to bring off-the-shelf, sequential ap-
plications to a scalable display wall and run them efficiently at its
intrinsic resolution.

Two models of program execution are studied: the master-slave
model and the synchronized program execution model. With the
master-slave model, a master node executes an application, inter-
cepts all graphics outputs such as 2-D and 3-D primitives (polygons,
lines, points, etc), and sends them to the nodes that drive the tiled



projectors for execution. With the synchronized execution model,
an instance of the application runs on each of the nodes that drive
the tiled projectors. Multiple instances are synchronized and coor-
dinated so that they act as if they are a single application designed
for the scalable-resolution display system. The synchronization (or
coordination) can be done either at the application level via a pro-
gramming API or by the runtime system transparently.

We have designed and implemented four software tools to sup-
port these two execution models. They are

� Virtual Display Driver (VDD), which supports 2-D Windows
applications using the master-slave model,

� A Distributed GL tool that supports 3-D applications using the
master-slave model,

� A runtime system that supports applications using the syn-
chronized program execution model, and

� A system-level tool that supports applications using the syn-
chronized program execution model.

In order to understand the performance implications and re-
source requirements of each method, we measured several 3-D
applications with our software tools on the scalable display wall
system. The results show that the master-slave model works rea-
sonably well for applications that send few or no graphics primi-
tives during each frame. The runtime support for the synchronized
program execution model achieves similar or sometimes better per-
formance than the master-slave model. The application-level syn-
chronization tool, when source code modification is possible, can
achieve much better performance and improve the application re-
sponse time.

2 Previous Work

The common way to run digital applications on a video wall is to
use the video content scaling hardware (video processor) to drive
an application’s output on a tiled display system. This approach
does not allow applications to use the intrinsic resolution of the
tiled displays.

Various kinds of tiled display systems have been constructed
for data visualization during the past few years. Examples include
the Power Wall at the University of Minnesota, the Infinite Wall
at the University of Illinois at Chicago [7], the Office of the Fu-
ture at UNC [15], the Information Mural at Stanford [9], and var-
ious immersive products from several vendors. In most cases, an
SGI Onyx2 or equivalent high-end machine with multiple graph-
ics pipelines is used to drive multiple projectors. Since these sys-
tems are not using a PC-cluster architecture, they do not address
the issue of software support for running sequential, off-the-shelf
applications on a scalable resolution display wall.

The idea of executing graphics primitives remotely can be found
in X windows [16]. The tools such as VDD and GRL described in
this paper leverage and extend these ideas for remote graphics prim-
itive executions for scalable resolution displays. VDD intercepts
primitives in a device driver and executes them remotely at the user
level whereas GLR substitutes primitives in a local OpenGL library.
The mechanisms for remote procedure call [13, 2] and remote exe-
cution model [17] have been investigated in the context of program-
ming languages.

The parallel graphics interface designed at Stanford [11] pro-
poses a parallel API that allows parallel traversal of an explicitly
ordered scene via a set of predefined synchronization primitives.
The goal is to expose parallelism while retaining many of the de-
sirable features of serial programming. The parallel API was not

designed to execute multiple instances of a sequential program on
a scalable display system built with a PC cluster.

3 Existing Desktop Applications

Our first approach to bringing desktop applications onto the display
wall is to run the application on a master node, intercept the graph-
ics primitives that the application generates, and send them over
the network to the render nodes (or the slaves). Figure 1 shows a
conceptual diagram of this master-slave approach. The primitives
can be broadcast to all render nodes or, as an optimization, be sent
only to the nodes with whose screen tiles they overlap. In either
case, a slave node performs view-frustum clipping to render those
primitives within its screen tile.

Render Node

Render Node

Render Node

Switch

Network
graphics primitives

graphics primitives

System Graphics Subsystem

Application

Interception Layer

Figure 1: Conceptual view of the master-slave approach

Clipping 2D primitives is straightforward. For 2D vector graph-
ics, this means translation of the 2D coordinates in the global dis-
play space to the local coordinates on each render node. The trans-
lation is simply an addition of offsets in X and Y directions. The
task is even simpler on the Windows platform. One can define a
viewport transform to for the graphics device that does exactly this.
Windows automatically applies the viewport transform to all subse-
quent drawings. For bitmaps, the render node selects a portion from
the bitmap that falls within its screen tile. Once again, this can be
trivially accomplished by specifying the appropriate rectangle to a
bitblt operation.

To clip 3D primitives, the render node can simply specify a sub-
volume of the global viewing frustum as its viewing frustum. This
sub-frustum can be trivially calculated using the screen tile’s rela-
tive position in the global display space.

Ideally, primitive interception should be transparent to the ap-
plications, so that we can run any application binaries and have their
graphics shown on the display wall without source modification or
re-linking. This means that we inject the interception mechanism in
the master node’s graphics subsystem that sits beneath the running
application. We found two ways to implement the transparent in-
terception mechanism: via a virtual display driver and by replacing
a dynamically-linked library (DLL).

3.1 Virtual display driver

In a typical PC operating system such as Microsoft Windows NT
and Linux, the graphics subsystem is implemented by a display
driver, which speaks a standard protocol to the application layer
on one side, and translates the application’s graphics commands
into device-specific commands on the other side. The interface be-
tween the application layer and the display driver is standardized
on a given operating system, so as to allow any graphics accelerator
vendors to implement their own vendor-specific drivers. Therefore,
we can implement a virtual display driver that acts as if it oper-
ated a real piece of graphics hardware, but actually takes the graph-
ics commands (or primitives) from the application layer and sends



Display
Driver

System Graphics Engine

Display Driver Interface

operating
system

Graphics Library (GDI)

Application

(1) A typical Display Driver architecture

hardware-specific   commands

video adapter

user mode

kernel mode

System Graphics Engine

Display Driver Interface

operating
system

Graphics Library (GDI)

Application

(2) The Virtual Display Driver architecture

graphics    primitives

Virtual
Display
Driver

via the network to remote render nodes

Figure 2: Architectural diagrams of a typical display driver and a
virtual display driver (VDD)

them over the network to the render nodes. Figure 2 illustrates the
common block structure of a typical display driver and that of a
virtual display driver.

An advantage of using such a virtual display driver is that it
presents to the applications a large display with intrinsically high
resolution. The applications and the operating system normally
query the display driver to obtain its screen resolution and adjust
the windows, menus, and drawing parameters accordingly. Uncon-
strained by the actual graphics hardware, the virtual display driver
is free to fake a display with an arbitrarily large number of pixels,
causing most applications to adapt their drawing resolutions to the
high resolution. As a demonstration, we ran Microsoft PowerPoint
on our 8-node Display Wall. In its “slide sorter view” mode, Pow-
erPoint placed many slides on the display with clear definition for
even the smallest fonts.

Due to the compact nature of the display driver protocol, im-
plementing a virtual display driver is usually not a daunting engi-
neering task. For example, on both the Windows NT 4.0 and Win-
dows 2000 operating systems, the protocol between the 2D drawing
layer in the application and the display driver, the Display Driver
Interface (DDI), consists of no more than 25 commonly used graph-
ics commands for drawing bitmaps, lines, polygons, etc. However,
there are still several non-trivial issues in implementing a virtual
display driver. The first issue is to translate the graphics objects that
are meaningful in the master node’s kernel environment to those
that can be used by the render nodes. An example of this trans-
lation is the drawing surface object that is passed as an argument
in most DDI commands to the virtual display driver. The surface
object can either identify a bitmap stored internally in the kernel or
the drawing surface.

The second issue is performing bitblt across the render nodes.
Unlike the bitblt operations on a single PC, the bitblt operations
among render nodes transfer pixels across the network. Similar to
the operations on a single PC, the order of operations is important.
Another method is to refresh from the master node, which is ineffi-
cient.

The third issue is how to distribute the graphics primitives ef-
ficiently among the render nodes. This issue is common to both
virtual display and DLL replacement approaches. We postpone its
discussion until Section 3.3

One can use the virtual display driver to implement most draw-
ing protocols on the Windows operating system: DDI and Direct-
Draw for 2D drawing, and Direct3D for 3D rendering. Similarly,
we can also implement the X Windows Protocol [16] The X Win-
dows server already embodies the concept of a virtual and net-

worked display. In this case, the virtual X Windows server is situ-
ated on the master node, and speaks the X protocol to local appli-
cations. It takes and translates the application’s X Windows com-
mands and forwards them to the render nodes.

As a final note, the applications running on the master node still
receive user inputs through conventional channels such as from a
real keyboard and a real mouse. We are experimenting with virtu-
alizing the user inputs as well, so that user interactions with the ap-
plications (and hence with the display wall) are no longer restricted
to the keyboard and the mouse attached to the master node.

3.2 DLL replacement

On modern operating systems, many services no longer reside in-
side the OS kernel. Instead, they are provided as dynamically-
linked libraries (DLL) and are linked into the applications by the
OS runtime. An example of this is the opengl32.dll on Win-
dows NT/2000 operating systems. This dynamically-linked li-
brary contains a default implementation for OpenGL renderings.
OpenGL is an industrial standard for high-performance 3D render-
ing. It is based upon a stateful client-server interaction model. Ma-
jor OpenGL commands include those that change and retrieve the
states on the server side, for example, setting the model transfor-
mation matrix, and those that specify the actual rendering primi-
tives, for example, 3D vertex and color specifications. The default
OpenGL implementation in opengl32.dll performs most ren-
dering stages on the CPU and then calls Windows’ 2D drawing API,
GDI, to carry out the final rasterization, i.e., converting a 2D line
or 2D polygon to actual pixels on the screen. If the graphics accel-
erator vendor implements OpenGL in hardware, a vendor-supplied
OpenGL DLL is also linked into the application; all OpenGL calls
made by the application are forwarded to the vendor-supplied DLL
by opengl32.dll.

To intercept the OpenGL commands from an application, we
can either write a replacement DLL that has a compatible inter-
face with the native opengl32.dll or one that is compliant with
the OpenGL vendor DLL interface. This latter method is less of a
hack than former, and can be well integrated with the virtual display
driver.

An advantage of using DLLs to intercept graphics primitives is
that communication between the master node and the render nodes
occurs at the user level. Not only is it easier to debug this approach,
it can also leverage several efficient user-level communication im-
plementations, including the one developed by us [6, 18, 19].

The drawback of this approach is that the API exported by the
DLL is typically large, and highly complex in some cases. This is
why writing a virtual display driver for 2D Windows applications is
a less painful job than writing a corresponding replacement DLL.
One exception is the OpenGL API. It is a fairly regular and well
thought-out interface. Even though there are between 200 and 300
calls in the API, we were quite successful at automatically generat-
ing the bulk of the replacement DLL using a simple parser.

3.3 Discussion

A remote display protocol is a general solution. It does, however,
have a potential problem in efficient distribution of graphics primi-
tives. An obvious solution is to broadcast the graphics primitives to
all render nodes. System-area networks today typically implement
point-to-point communication via a switch. Few networks except
Ethernet implement broadcast or multicast in hardware. We cur-
rently employ a ring topology to broadcast graphics primitives in
64 KB chunks over Myrinet. This method may incur high latency
as the number of projectors scales up. Another common broad-
cast topology is a binary balanced tree. Although its latency is



���������	��
���
, this topology may suffer from poor bandwidth because

each network endpoint has to send two copies of each packet out to
its children. Efficient broadcast over a point-to-point network still
remains an open problem.

Aside from lacking an efficient broadcast mechanism, the prim-
itive distribution speed in the master-slave approach is essentially
constrained by the speed of the outgoing network link on the mas-
ter node. The network interface is typically connected to an I/O bus.
Its bandwidth is often an order of magnitude smaller than that of the
internal memory bus. For immediate-mode applications that gener-
ate 3D primitives for each frame, this means they may run slower
on the display wall than on a single machine. The slow-down fac-
tor may not be an order of magnitude, because the primitive ren-
dering task is now partitioned among many render nodes according
to the screen tiles. But when these immediate-mode applications,
typically 3D games, are written for a balanced system where the
graphics accelerator’s performance matches the bandwidth of the
local graphics/memory bus, the relatively slow network link will
definitely hamper the rendering rates of the display wall system.

Many retained-mode applications, however, will not suffer from
the network bottleneck. These applications largely deal with static
scenes whose rendering can be compiled into OpenGL display lists
or the like. The master node only pays an up-front cost to send
the rendering commands for each display list to the render nodes.
It then can simply issue rendering commands by referencing the
display lists. As a result, very little data, other than changes in the
viewing position and the movements of the objects, must be sent
over the network.

4 Synchronized Program Execution

The basic idea in synchronized program execution is to run multiple
instances of a program on the display wall render nodes. The execu-
tion of these program instances are synchronized at some level, with
respect to a synchronization boundary, so that within this boundary
these instances assume identical behaviors. As a result of synchro-
nization, the program instances generate identical scene descrip-
tions, which can simply be identical OpenGL 3D primitives across
all render nodes or some higher-level scene description that each
node instantiates in a tile-specific fashion.

������������������������������������������������������

���������������������������������������������������������������������������������������������������
���������������������������������������������

Operating Environment

Scene Management

scene   description

Scene Rendering

Graphics Subsystem

graphics  primitives

to the projector

���������������������������������������������������������������

������������������������������������������������������������������������������������������������������������
��������������������������������������������� �����������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������

������������������������������������������������������

���������������������������������������������������������������������������������������������������
���������������������������������������������

Operating Environment

Scene Management

scene   description

Scene Rendering

Graphics Subsystem

graphics  primitives

to the projector

synchronization level

Figure 3: Full replication of multiple program instances

In the first scenario, as depicted in Figure 3, the graphics accel-

erator performs tile-specific culling and only renders those prim-
itives that fall within its respective screen tile. This can be en-
abled by setting the appropriate view frustum matrix for each render
node [8].

������������������������������������������������������������������

 � � � � �  � � � � �  � � � � �  � � � � �  � � � � �  � � � � � !�!�!�!�!�!!�!�!�!�!�!!�!�!�!�!�!!�!�!�!�!�!!�!�!�!�!�!!�!�!�!�!�!
"�"�"�"�"�""�"�"�"�"�""�"�"�"�"�""�"�"�"�"�""�"�"�"�"�""�"�"�"�"�"

#�#�#�#�#�##�#�#�#�#�##�#�#�#�#�##�#�#�#�#�##�#�#�#�#�##�#�#�#�#�#

$�$�$�$�$$�$�$�$�$$�$�$�$�$$�$�$�$�$$�$�$�$�$$�$�$�$�$%�%�%�%�%�%%�%�%�%�%�%%�%�%�%�%�%%�%�%�%�%�%%�%�%�%�%�%
&�&�&�&�&&�&�&�&�&&�&�&�&�&&�&�&�&�&&�&�&�&�&

Operating Environment

Scene Management

scene   description

Scene Rendering

Graphics Subsystem

graphics  primitives

to the projector

'�'�'�'�''�'�'�'�''�'�'�'�''�'�'�'�''�'�'�'�''�'�'�'�'

(�(�(�(�((�(�(�(�((�(�(�(�((�(�(�(�((�(�(�(�((�(�(�(�(

Operating Environment

Scene Management

scene   description

Scene Rendering

Graphics Subsystem

graphics  primitives

to the projector

)�)�)�)�)�))�)�)�)�)�))�)�)�)�)�))�)�)�)�)�))�)�)�)�)�))�)�)�)�)�))�)�)�)�)�)

*�*�*�*�*�**�*�*�*�*�**�*�*�*�*�**�*�*�*�*�**�*�*�*�*�**�*�*�*�*�**�*�*�*�*�*+�+�+�+�++�+�+�+�++�+�+�+�++�+�+�+�++�+�+�+�+
,�,�,�,�,,�,�,�,�,,�,�,�,�,,�,�,�,�,,�,�,�,�,

synchronization level

Figure 4: Tile-specific primitive generation in application-level
synchronization

In the second scenario, as illustrated in Figure 4, the higher-
level scene description can be fed into the view-dependent soft-
ware layer that generates tile-specific primitives. An example of
the second scenario is a scene graph render program that organizes
the scene data in a hierarchy of objects. Given a tile-specific view
frustum, the program can remove the objects that fall completely
outside the frustum.

To better illustrate our idea, we partition a program conceptu-
ally into two components: scene management and scene rendering.
The scene management component interacts with the program’s op-
erating environment, for example, reading files and getting the key-
board and the mouse inputs, and changes its internal behaviors ac-
cordingly. In other words, the scene management responds to the
events in the environment; its behaviors are completely determined
by its interaction with the environment. The scene rendering com-
ponent takes from the scene management layer the scene descrip-
tion, from which it generates the graphics primitives. The picture is
even clearer if we take a pipeline view of a program, as illustrated in
Figure 5. The upper stage of the pipeline, the scene management, is
synchronized across all render nodes. Beneath the synchronization
level, the scene rendering layer is free to perform any tile-specific
tasks, provided its actions do not alter the behavior of the scene
management layer.

4.1 Synchronization infrastructure

Our program synchronization framework consists of a thin synchro-
nization layer on each render node and a coordinator. The synchro-
nization layer intercepts certain function calls made by the scene
management component of the program to interact with the envi-
ronment. For each intercepted function call, the results from one
render node are picked by the coordinator and sent to the other
nodes.

Each synchronization of a function call acts like a barrier syn-
chronization. Since the result from only one node is sent back to
other nodes, one can use an efficient broadcast topology such as a



Scene Rendering

graphics  primitives

Operating Environment

Scene Management

scene   description

synchronization level

Figure 5: The pipeline view of the two program components

Management
Scene

Management
Scene2

11

3 4

2

34
synchronization

layer

coordinator

Operating Environment

Figure 6: The synchronization framework

multi-cast tree to implement a call synchronization. Furthermore,
only those function calls that can potentially alter the program be-
haviors need to be synchronized. They typically include calls to
query keyboard and mouse inputs, calls to read the system timers,
and file I/O operations. Most of these calls have results that are
small in size. Hence synchronizing these calls require little com-
munication bandwidth, though low communication latency is vital
to keeping the synchronization overhead down. Large file reads
can be synchronized with an efficient multicast mechanism such as
the UDP-based broadcast mechanism that we describe later in the
paper.

The actual placement and implementation of the synchroniza-
tion layer depends on whether we employ system-level or program-
level synchronization.

4.2 System-level program synchronization (SSE)

synchronization

System

Program Program

system callsystem call

Operating
System

Operating
layer

Figure 7: Program synchronization at the system-call level

The goal of system-level program synchronization (SSE) is to
replicate a program on multiple nodes in a transparent fashion, i.e.,

without modifying and re-linking the program. We also require that
SSE incur very low overhead, even as the number of nodes in the
system scales. System-level program replication has been studied
in the context of fault-tolerant computing. In Hypervisor, Bres-
soud et al proposed a method that treats an actual software system
as running on a virtual machine [4, 5]. In their framework, two
or more such systems can be replicated by synchronizing the run-
time semantics of the virtual machine I/O instructions. However,
the virtual machine defined in Hypervisor is too close to the actual
microprocessor architecture. The fine-grain synchronization causes
excessive overhead and slows down the program by as much as a
factor of 2.

In order to avoid the high overhead incurred by the Hypervi-
sor approach, we define a virtual machine as the operating system.
The macro instruction set of this virtual machine is the system-call
API defined on the OS, as shown in Figure 7. For a single-threaded
program, one can prove that synchronizing at the system call level
leads to synchronized program execution. The reason is that code
execution is deterministic from the microprocessor architecture’s
point of view. A single-threaded program’s execution path is only
influenced by external events. The way these external events affect
the program behavior is through the system-call interface and sig-
nal handling on UNIX. It follows that if we make the interaction be-
tween the program and the OS environment identical on all nodes,
the program instances will all follow the same execution path and
exhibit the same behavior, and as a result, produce the same graph-
ics primitives.

We have made a few simplifying assumptions in our SSE ap-
proach. First, we ignore those programs that interact with the rest
of the system via shared-memory segments, because in such cases
we have to intercept all reads and writes to the shared-memory seg-
ments in order to achieve exact program replication. Second, we
assume most programs access the CPU cycle counter via a well-
defined API, such as the QueryPerformanceCounter() on
the Windows platform, so that we can intercept these accesses as
well. For programs that use assembly instructions to read the cycle
counter, as allowed by the Intel architecture, we could certainly edit
the program binary and replace offending instructions with calls to
a special handler. In practice, however, this need has not arisen.

Our SSE mechanism does have one limitation: it is not guaran-
teed to work with arbitrary multi-threaded applications. The prob-
lem lies in the fact that it is hard to ensure identical interleaving of
threads among multiple program instances. This problem becomes
even harder for multi-processor nodes on which several program
threads can be running at the same time, because in this case the
threads can interact with each other via shared physical memory.
To capture such interactions we would have to intercept the load
and store instructions, basically going back to the Hypervisor ap-
proach.

Among numerous system calls a program makes, only a handful
of them can alter program states. They include the calls to query
Window messages and the system timer. Therefore, our system-
level synchronization layer only performs synchronization for these
selected system calls. Our system call synchronization technique
works primarily for programs with a single thread. In theory, it
should also work for those multi-threaded programs, in which a
single thread interacts with the environment while the other threads
simply compute the scenes without affecting the internal states of
the program.

4.3 Application-level program synchronization (APE)

Program replication at the system call level can transparently syn-
chronize multiple program instances. However, it is not guaranteed
to work for multi-threaded programs. In addition, since the system-



level approach treats the entire program as a whole, it cannot sepa-
rate the program into scene management and scene rendering com-
ponents and let the latter perform tile-specific primitive generation
and rendering. We can solve these two problems by moving the
synchronization boundary into the application itself.

The same mechanism for system-level program synchroniza-
tion can be used to synchronize program instances at the applica-
tion level. Instead of system calls, we synchronize function calls
within the application. We currently provide a simple API call,
SynchronizeResult() to let all render nodes get consistent
results. Figure 8 illustrates the semantics of a function call syn-
chronization. One can also imagine building a sophisticated inter-
face description language (IDL) that automates the synchronization
of user functions.

synchronized fun � ���������	�
����� �����
result :������� � � ��� � ��� � ����� ��������� "! �#�%$'&)(+*,(
-�. � � � �/�0� �!#(#-�. � �1� � �����

Figure 8: The semantics of a function call synchronization

To facilitate calculation of the tile-specific view frustum,
we also provide two function calls, QueryDisplayInfo()
and GetLocalViewFrustum(). The first call returns a
render node’s screen position and its node ID in the tu-
ple (GlobalScreenRectangle, MyScreenRectangle,
MyNodeId). The second call takes a global view frustum, as de-
fined in a single-node version of the program, and calculates the
local view frustum based on the node’s tile position in the display
wall.

An application can take advantage of application-level synchro-
nization by simply performing high-level object culling based on
its local view frustum. Given N projectors in a display wall, each
screen tile has only 2+3 
 of the the global frustum. Generally this
results in a small fraction of objects for each render node to ren-
der. Instead of generating all the primitives and letting the graphics
accelerator throw out primitives that fall outside the local frustum,
the scene rendering component of each program instance can reject
a group of graphics primitives or avoid generating them, by com-
paring their bounding box with its view frustum. Such high-level
culling needs much less computation time and consumes far less lo-
cal bus bandwidth. And it is generally easy to implement. Note that
this kind of high-level culling is not possible in the master-slave ap-
proach, because the master has to generate primitives for the entire
global view frustum.

With more programming effort, one can further reduce the
amount of computation required to generate graphics primitives.
Many data visualization applications that deal with large data sets
belong to this category. One example is an isosurface extraction
program developed in our department. An isosurface of a 3D scalar
field is made of points, the isopoints, that have the scalar value of a
given constant. Extracting isosurfaces is a very useful technique to
understand complex volume data that are generated by many med-
ical applications like CT and scientific computations such as astro-
physics simulations. These applications often generate scalar fields
that are sampled at discrete points in 3D space. The isosurface in
these cases is a smooth interpolation of discrete isopoints. Tradi-
tional isosurface extraction algorithms extract the whole isosurface.
However, the size and complexity of datasets is constantly growing.
Due to the high depth complexity and the large dimensions of the
dataset, typically only part of the isosurface is visible. Isoview is an
isosurface extraction program that tries to extract only the visible

portion of the isosurface. The algorithm casts a certain number of
rays from the eye through the screen into the dataset and calculates
the intersection of the ray and the isosurface. From the intersection
point, by exploiting isosurface’s continuity property, part of the iso-
surface can be extracted efficiently.

my screen

displaywall

eye point

displaywall

GetDisplayInfo()

Compute ViewFrustum

Cast Rays

Generate Isosurface

Draw Primitives

Graphics

Accelerator

local     graphics/memory bus

global extraction and    rendering parameters

Scene Management :
keyboard callback
mouse callback, etc

Application-level Synchronization Layer

Figure 9: The flow diagram of the APE version of isoview

Running IsoView on the Display Wall can give the user more
details and information about the data. Since this algorithm is
screen-space based, it can be easily parallelized on the Display
Wall. We partitioned the program into two components, the man-
agement and the extraction. The management component obtains
user directives such as mouse and keyboard inputs. It sets the
meta state of the program, which is synchronized by a function call
that every program instance makes prior to performing the actual
isosurface-extraction algorithm. The extraction component obtains
the meta state and a node-specific screen tile position and calculates
the perspective projection matrix that is used for both rendering and
ray-casting. Data partitioning is automatically obtained through
partitioned ray-casting. Figure 9 depicts the conceptual flow of the
isoview program using application-level synchronization. Very lit-
tle extra work is required to make the single-node isoview program
into a display wall-aware version employing application-level syn-
chronization. It took us only half an hour.

4.4 Past work on program replication

Synchronizing multiple instances of a same program has been stud-
ied by the fault-tolerant computing community. An early technique
relied on a specially-built processor pair that executed instructions
in lock steps. The memory accesses by the processors are checked
by a special logic located between the processors and the mem-
ory subsystem. A third microprocessor was typically included in
the mirror pair to provide what is known as triple modular redun-
dancy (TMR). Some commercial vendors extended the hardware
mirroring concept throughout the entire computer system to provide
very high degree of availability in face of hardware component fail-
ures [1, 20]. Synchronizing processor pairs at the instruction level
provides a transparent means to replicate program instances; the
program need not be rewritten in order to run such a processor pair.
However, this technique not only requires expensive engineering



efforts, but also faces a tremendous difficulty to keep up with the
rapid increase of CPU clocks.

As an alternative, several commercial vendors of fault-tolerant
computer systems provide special programming API to synchronize
program instances in software. For example, on a Tandem computer
system, an application uses messages to communicate with the op-
erating system and other system services. Multiple instances of the
application can be brought to be in sync as long as the messages
they send and receive are synchronized, provided that between any
two messaging events the application follows a deterministic ex-
ecution path. A traditional architecture that only supports single-
threaded execution guarantees this deterministic property. For a
multi-processor multi-thread environment, program synchroniza-
tion requires a special API at a level higher than messaging and
application-specific programming.

Bressoud et al investigated a system-level approach to automat-
ically and transparently replicate programs [4, 5]. Their key in-
sight is that by virtualizing the hardware on which the program
and the operating system runs, one can implement the traditional
processor-pair approach as mirroring a virtual machine pair. The
study by Bressoud et al further demonstrates that only a few I/O
instructions in the virtual machine instruction set require synchro-
nization. Their results show that two synchronized computer sys-
tem using the virtual-machine-pair (or Hypervisor) approach runs at
worse twice as slow as one system without synchronization. A sig-
nificant benefit of the Hypervisor approach is that virtual machine
synchronization (or replication) can be done entirely in software,
thus can keep close track of the processor technology.

Unlike Hypervisor, our purpose is to synchronize a specific ap-
plication program instead of the entire system. A Hypervisor-like
virtual machine that mimics the actual processor is an overkill and
incur too much synchronization overhead, as synchronization is
performed on each I/O instruction. Instead, we lift the virtual ma-
chine abstraction even higher, and consider the interface between
the application and the operating system as the virtual machine ab-
straction 1. Synchronizing program instances at such a macro level
reduces the synchronization frequency. In our case, it makes syn-
chronization cost almost negligible.

5 Experimental Results

We have implemented all four approaches described in the previ-
ous sections: VDD (Virtual Display Driver), GLR (GL-DLL Re-
placement), SSE (System-level Synchronized Execution), and ASE
( Application-level Synchronized Execution). These tools all run
on the scalable display wall prototype system described in Section
2. In writing the SSE tool, we used the Detours package from Mi-
crosoft Research [10]. It is a binary re-write tool for intercepting
any functions in a program or a DLL.

The display wall system has two communication mechanisms
available to applications: the Microsoft Winsock over the 100
Mbit/sec Ethernet, and VMMC over the Myrinet. VDD, SSE and
ASE all use the Winsock protocol while GLR uses VMMC. The
main reason for the difference is that GLR requires a fast commu-
nication mechanism to run well. If a 3D application generates a
large number of polygons at run time or so called immediate mode
in GL, GLR needs high-performance communication paths to the
render nodes to send polygons efficiently. The other three tools do
not need to transfer polygons among nodes, so they work well with
the Ethernet.

We used GLR, SSE, and ASE to run 3D applications in our ex-
periments. The goal here is to understand the tradeoffs of these

1Although we came up with this technique independently, we did later find a U.S.
patent about exactly the same technique [3].

tools in terms of speed, memory requirements, communication re-
quirements, I/O requirements, and software development efforts.
The rest of this section reports our experimental results.

5.1 3D Applications

We have selected 4 representative applications: Cars, GLQuake,
Atlantis, and Isoview. We chose these applications to cover a wide
range of 3D animation characteristics.

� Cars: This is a demo program of the WorldUp Toolkit from
EAI, Inc. It renders a virtual-reality scene that includes two
highly sophisticated car models in an exhibition hall. There
are a lot of texture details and fancy lighting in the scene. The
cars themselves are made up of 200,000+ polygons each. This
makes rendering time the dominant cost. All the objects in
the scene are made into OpenGL display lists. The GLR tool
needs to send the display lists once at the beginning of the
program execution.

� GLQuake: This is an OpenGL program to view Quake
scenes, downloaded from the Internet. The Quake scene de-
scription is in BSP-tree format. By parsing the BSP tree, the
program generates polygons in real time. The scene that we
use is fairly simple, containing only 12,722 polygons.

� Atlantis: This is a demo program from Silicon Graphics, Inc.
It simulates a pool of swimming sharks, whales, and a dol-
phin. The body poses for each object are computed in real
time, so it is not possible to use OpenGL display lists to avoid
generating polygons for each frame. In our experiment, we in-
creased the number of sharks to 300 to simulate a lively scene
with many fish. This results in a large number of graphics
primitives for each frame. Furthermore, in the application-
level synchronization version of the program, we perform ob-
ject culling based a coarse bounding sphere for each shark.

� Isoview: This is a program to visualize the isosurfaces of vol-
umetric datasets. The program extracts a 3D surface from the
data where � ��� ������& � ���

for a given threshold
�

. The pro-
gram uses a combination of ray casting and isosurface prop-
agation techniques to extract only the visible portions of the
isosurface. Since the program allows users to change the view
of the isosurface dynamically, it has to generate polygons for
each frame at run time. Our experiment uses Isoview to view�����
	������
	����

, a down-sampled version of the dataset of
the head of a visible woman [14]. The visualization of the
data typically generates about hundreds of thousands of poly-
gons per frame. With the ASE tool, this program performs
high-level object culling.

The following table summarizes the features of the four 3D ap-
plications:

Applications GL features # Polygons/frame Source
Cars display list 200,000 no
GLQuake immediate 12,722 no
Atlantis immediate 94,549 yes
Isoview immediate 645,237 yes

Since the source codes of Cars and GLQuake are not available, we
are not able to run them with the ASE tool.

5.2 Results

Table 5.1 shows the results we gathered from running the four ap-
plications with GLR, SSE and ASE on the display wall system.



Applications/Methods
Performance Metrics Cars GLQuake Atlantis Isoview

GLR SSE ASE GLR SSE ASE GLR SSE ASE GLR SSE ASE
frame time (ms) 370 325 - 80.6 65.7 - 147.6 86.2 57.9 20163 16825 4798
sync cost/frame (ms) - 4.9 - - 20.0 - - 2.1 1.8 - 2.0 3.6
sync msgs/frame (count) - 4 - - 8 - - 2 2 - 2 3
data size/frame (KB) 99.2 0.47 - 174 0.82 - 3300 0.24 0.19 46500 0.24 0.48

Table 1: The performances of three methods: GL-DLL Replacement (GLR), System-level Synchronized Execution (SSE), and Application-
level Synchronized Execution (ASE)

The performance metrics include the average time for each frame,
the number of synchronization messages and synchronization over-
head (when appropriate), the amount of data sent over the network,
and the maximum amount of memory consumed on each render
node.

The frame times for each application running with the three
tools are also plotted in Figure 10.

m-s sys app m-s sys app m-s sys app m-s sys app

applications/methods

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed
 f

ra
m

e 
ti

m
e

render time

sync time

cars glquake atlantis isoview

Figure 10: Frame time comparison of three methods

Our results show that the application-level synchronized exe-
cution approach using the ASE tool is the most efficient approach.
For Atlantis, ASE is 2.5 and 1.48 times faster than GLR and SSE
respectively. For Isoview, ASE is 4.2 and 3.5 times faster than GLR
and SSE respectively. The second fastest is the system-level syn-
chronized execution approach with the SSE tool. The master-slave
approach with the GLR tool is the least efficient among the three.

There are two main reasons why ASE is the most efficient. The
first is that its communication requirements are very small, less than
500 bytes per frame for either application. The second is that ASE
provides each render node with opportunities to avoid doing dupli-
cated work for other render nodes. To take advantage of this ap-
proach, one needs to modify the application to perform high-level
object culling according to the knowledge about the tiled screen
space. Our experience with both Atlantis and Isoview demonstrates
that with a convenient mechanism such as application-level syn-
chronization, one can easily modify the application codes. In the
Atlantis case, the resulting reduction of shark pose computation
and graphics primitives averages 50% for each render node. On
the other hand, this approach requires accessing application source
codes.

The system-level synchronized execution approach with the
SSE tool works quite well without having to access application
source codes. Similar to the application-level synchronized exe-
cution approach, it imposes very little communication overhead in
all applications.

The master-slave approach using the GLR tool works reason-
ably well with applications that use display lists, because polygon
data need to be transferred only at the beginning of the program
and very little data during each frame. For example, the master
node running the Cars program sends roughly 99 KBytes worth of
data to the render nodes during each frame. Its performance is com-

parable to that of the system-level synchronization which requires
very little communication. We do notice the frame time difference
of 45 milliseconds between the master-slave approach and the SSE
approach for the Cars program. Its cause is still unclear to us. We
are investigating this issue using detailed performance monitor.

The master-slave approach is sensitive to the amount of
immediate-mode graphics primitives. With the GLQuake program,
the GRL tool has about 15ms overhead. This is because the pro-
gram creates only a relatively small number of polygons per frame
which translates to about 174 Kbytes per frame. With Atlantis
and Isoview, the overheads are 61.4ms and 3338.7ms respectively
because these two programs require the master node to transfer
3.3Mbytes and 46.5Mbytes per frame respectively. However, the
percentage difference in the case of isoview is relatively small, be-
cause the computation time dominates.

Therefore, our conclusion is that for immediate-mode applica-
tions with low computation time per primitive, synchronizing mul-
tiple instances at the system level has a clear advantage over the
master-slave approach. When per-primitive computation is high,
communication time becomes either less significant or completely
negligible due to its overlapping with computation.

On the other hand, the master-slave approach is the best in terms
of memory requirements. The master node runs a single copy of
the application on the master node, whereas SSE and ASE runs an
instance of the application on every render node. The application-
level synchronized execution approach can have smaller working
sets than the system-level synchronized execution approach when
it performs high-level object culling.

6 Conclusions

In this paper we described four software tools for bringing off-the-
shelf, sequential applications onto a scalable display wall system.
We have used these tools to experiment with several 2D and 3D ap-
plications on our display wall system to study the scalability issue.
What we have learned is that these methods have different trade-
offs in terms of speed, memory requirements and communication
requirements.

The master-slave approach does not scale well in performance
for applications that generate a large number of primitives dynam-
ically, but it scales well in terms of memory requirements. Our
experience with the GLR tool, for example, shows that the ap-
proach works reasonably well with 3D applications that use display
lists whereas it performs poorly with applications using immediate-
mode 3D primitives. Despite of its performance drawbacks, it is
quite convenient to use.

The synchronized execution approaches trade memory space
for less communication requirements. The system-level synchro-
nized execution approach scales well in performance because its
communication requirements are minimal. Our experiment with
the SSE tool, for example, shows that it performs better than the
master-slave approach with all applications. Like the master-slave



approach, it requires no source code modifications to applications.
Unlike the master-slave approach, the SSE tool works only with ap-
plications that use a single thread to communicate with the external
environment.

The application-level synchronized execution approach is the
most efficient method when one performs high-level object culling.
For Atlantis, ASE is 2.5 and 1.48 times faster than GLR and SSE
respectively. For Isoview, ASE is 4.2 and 3.5 times faster than
GLR and SSE respectively. By default, this approach takes the
same amount of memory as the system-level synchronized execu-
tion approach, but by high-level object culling, it can reduce mem-
ory requirements. Unlike the system-level synchronized execution
approach, this method works with all applications though it does
require application source code modifications.

The software tools development described in this paper is our
first step towards understanding how to build scalable display wall
software systems. Our studies have several limitations. First, our
GLR tool was implemented using the VMMC on Myrinet. Al-
though the comparisons are conservative from the point of view
of the synchronized execution model, it would be better if we can
port the implementation to Winsock on the same Ethernet.

Acknowledgements

This project is part of the Princeton Scalable Display Wall project
which is supported in part by Department of Energy under grant
ANI-9906704 and grant DE-FC02-99ER25387, by an Intel Re-
search Council and Intel Technology 2000 equipment grant.

We also would like thank the reviewers who provided much use-
ful feedback on improving this paper.

References

[1] J. F. Bartlett. A nonstop operating system. In Proceedings of the 11th Hawaii
International Conference on System Sciences, volume 3, 1978.

[2] A.D. Birrell and B.J. Nelson. Implementing remote procedure calls. ACM Trans-
actions on Computer Systems, 2(1):39–59, February 1984.

[3] T.C. Bressoud, J.E. Abhern, K.P. Birman, R.B. Cooper, B.B. Glade, F.B. Schnei-
der, and J.D. Service. Transparent fault tolerant computer system. United States
Patent 5,968,185, October 1999.

[4] Thomas C. Bressoud and Bruce B. Schneider. Hypervisor-based Fault-tolerance.
In Proceedings of the Fifteenth ACM Symposium on Operating System Principles
(ASPLOS V), pages 1–11, Copper Mountain Resort, Colorado, December 1995.
ACM.

[5] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-based fault tolerance.
ACM Transactions on Computer Systems (TOCS), 14(1):80–107, February 1996.

[6] Yuqun Chen, Angelos Bilas, Stefanos N. Damianakis, Czarek Dubnicki, and Kai
Li. Utlb: A mechanism for translations on network interface. In Proceedings
of the 8th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 193–204, October 1998.

[7] Carolina Cruz-Neira, Daniel J. Sandin, and Thomas A. DeFanti. Surround-screen
projection-based virtual reality: The design and implementation of the cave. In
James T. Kajiya, editor, Computer Graphics (SIGGRAPH ’93 Proceedings), vol-
ume 27, pages 135–142, August 1993.

[8] J.D. Foley, A. van Dam, S. K. Feiner, and J.F. Hughs. Simulated Annealing
Methods, chapter 0, pages ???–??? Addison-Wesley, 2 edition, 1996.

[9] Greg Humphrey and Pat Hanrahan. A distributed graphics system for large tiled
displays. In IEEE Visualization ’99, 1999.

[10] Galen Hunt and Doug Brubacher. Detours: Binary interception of win32 func-
tions. In The 3rd USENIX Windows NT Symposium, pages 135–143, Seattle,
Washington, July 1999.

[11] Homan Igehy, Gordon Stoll, and Pat Hanrahan. The design of a parallel graphics
interface. In ACM 1998 SIGGRAPH, 1998.

[12] Theo Mayer. New options and considerations for creating enhanced viewing
experiences. In Computer Graphics, pages 32–34, May 1997.

[13] Bruce J. Nelson. Remote Procedure Call. PhD thesis, Carnegie-Mellon Univer-
sity, May 1981.

[14] National Institute of Health. Electronic imaging: Report of the board of regents,
u.s. department of health and human services, public health, national institutes
of health. NIH Publication 90-2197, 1990.

[15] Ramesh Raskar, Greg Welch, Matt Cutts, Adam Lake, Lev Stesin, and Henry
Fuchs. The office of the future: A unified approach to image-based modeling. In
SIGGRAPH 98, pages 179–188, July 1998.

[16] Robert W. Scheifler and Jim Gettys. The x window system. ACM Transactions
on Graphics, 5(2):79–109, April 1986.

[17] Alfred Z. Spector. Performing remote operations efficiently on a local computer
network. Communications of the ACM, 25(4):260–273, April 1982.

[18] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-net: A user-level network in-
terface for parallel and distributed computing. In Proceedings of the 15th Annual
Symposium on Operating System Principles, pages 40–53, December 1995.

[19] T. von Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser. Active messages:
A mechanism for integrated communication and computation. In Proceedings
of the 19th Annual Symposium on Computer Architecture, pages 256–266, May
1992.

[20] S. Webber and J. Beirne. The stratus architecture. 21st Int. Symp. on Fault-
Tolerant Computing (FTCS-21), pages 79–85, 1991.


